Home Up Back Forward Leave Message

Because the Taylor Series result in normal polynomials (finite or infinite) we can see what the affect of complex numbers are on them. We will cover a few of them to see what the affect of applying complex numbers to them are.

Exponential Function

$$ \begin{aligned} e^x & = \sum_{j=0}^\infty {{x^j} \over j!}\\ e^{xi} & = \sum_{j=0}^\infty {{(xi)^j} \over j!}\\ & = 1 + xi - {{x^2} \over 2!} - {{x^3} \over 3!}i + {{x^4} \over 4!} + {{x^5} \over 5!}i- {{x^6} \over 6!} - {{x^7} \over 7!}i + {{x^8} \over 8!} + {{x^9} \over 9!}i - ...\\ & = \left(1 - {{x^2} \over 2!} + {{x^4} \over 4!} - {{x^6} \over 6!} + {{x^8} \over 8!} - ....\right) + \left(x -{{x^3} \over 3!} + {{x^5} \over 5!}- {{x^7} \over 7!} + {{x^9} \over 9!} - ..\right)i\\ & = \left(\sum_{j=0}^\infty (-1)^j \cdot {{x^{2j}} \over (2j)!}\right) + \left(\sum_{j=0}^\infty (-1)^j \cdot {{x^{2j+1}} \over (2j+1)!}\right)i \end{aligned} $$
But these two sums we have already met (Taylor Series of Trigonometric functions) and can therefore reduce it to:
$$ \begin{aligned} e^{xi} & = cos(x) + sin(x)i \end{aligned} $$
If we want to add a real part to the number we can do it as follow:
$$ \begin{aligned} e^{a+xi} & = e^a \cdot e^{xi} = e^a \left( cos(x) + sin(x)i \right) \end{aligned} $$

Trigonometric Functions

$$ \begin{aligned} cos(xi) & = \sum_{j=0}^\infty (-1)^j \cdot {{(xi)^{2j}} \over (2j)!}\\ & = \sum_{j=0}^\infty (-1)^j \cdot i^{2j} \cdot {{x^{2j}} \over (2j)!}\\ & = \sum_{j=0}^\infty (-1)^j \cdot (-1)^{j} \cdot {{x^{2j}} \over (2j)!}\\ & = \sum_{j=0}^\infty {{x^{2j}} \over (2j)!}\\ & = cosh(x)\\ sin(xi) & = \sum_{j=0}^\infty (-1)^j \cdot {{(xi)^{2j+1}} \over (2j+1)!}\\ & = \sum_{j=0}^\infty (-1)^j \cdot i^{2j+1} \cdot {{x^{2j+1}} \over (2j+1)!}\\ & = \left( \sum_{j=0}^\infty (-1)^j \cdot i^{2j} \cdot {{x^{2j+1}} \over (2j+1)!} \right)i\\ & = \left( \sum_{j=0}^\infty (-1)^j \cdot (-1)^j \cdot {{x^{2j+1}} \over (2j+1)!} \right)i\\ & = \left( \sum_{j=0}^\infty {{x^{2j+1}} \over (2j+1)!} \right)i\\ & = sinh(x)i\\ \end{aligned} $$

Hyperbolic Trigonometric Functions

$$ \begin{aligned} cosh(xi) & = \sum_{j=0}^\infty {{(xi)^{2j}} \over (2j)!}\\ & = \sum_{j=0}^\infty i^{2j} \cdot {{x^{2j}} \over (2j)!}\\ & = \sum_{j=0}^\infty (-1)^{j} \cdot {{x^{2j}} \over (2j)!}\\ & = cos(x)\\ sinh(xi) & = \sum_{j=0}^\infty {{(xi)^{2j+1}} \over (2j+1)!}\\ & = \sum_{j=0}^\infty i^{2j+1} \cdot {{x^{2j+1}} \over (2j+1)!}\\ & = \left( \sum_{j=0}^\infty i^{2j} \cdot {{x^{2j+1}} \over (2j+1)!} \right)i\\ & = \left( \sum_{j=0}^\infty (-1)^j \cdot {{x^{2j+1}} \over (2j+1)!} \right)i\\ & = sin(x)i\\ \end{aligned} $$
From this we can deduce the following:
$$ \begin{aligned} e^{xi} & = cos(x)+sin(x)i\\ & = cosh(xi) + sinh(xi)\\ cosh(x) + sinh(x) & = {{e^x + e^{-1}} \over 2} + {{e^x - e^{-1}} \over 2} = e^x\\ \therefore \, e^x & = cos(ix) - sin(ix)i\\ \end{aligned} $$